Gödel's Incompleteness Theorem

Part II: Arithmetical Definability

Computability and Logic

The Language of Arithmetic

- The language of arithmetic L_A contains the following four non-logical symbols:
 - 0: constant symbol
 - s: 1-place function symbol
 - -+: 2-place function symbol
 - x: 2-place function symbol
- An arithmetical formula is a FOL formula that uses L_A as its only non-logical symbols.

Standard Interpretation N

- N is the following (standard) interpretation of the language of Arithmetic:
 - Domain: natural numbers (0,1,2,3, etc)
 - N(0) = 0
 - N(s) = s, the successor function
 - N(+) = +, the addition function
 - N(×) = ×, the multiplication function
 - More technically, where t_0 , t_1 , and t_2 are variable-free terms:
 - N(s(t₀)) = s(N(t₀))
 - $N(t_1 + t_2) = N(t_1) + N(t_2)$
 - $N(t_1 \times t_2) = N(t_1) \times N(t_2)$

Arithmetical Definability

- Let **n** = **s(s(...(0)...))** (n times)
- Remember that we write $N \vDash \varphi$ to say that under standard interpretation N, φ is a true statement.
- An arithmetical formula $\varphi(\mathbf{x})$ arithmetically defines a set S iff for all natural numbers n: $n \in S$ iff $N \models \varphi(\mathbf{n})$.
- A set S of natural numbers is *arithmetically definable* if and only if there exists an arithmetical formula φ(x) that arithmetically defines S.

Arithmetical Definability of Relations and Functions

- An m-place relation R of natural numbers is arithmetically definable if and only if there exists an arithmetical formula $\varphi(\mathbf{x}_1, ..., \mathbf{x}_m)$ such that for all natural numbers $n_1, ..., n_m : \langle n_1, ..., n_m \rangle \in \mathbb{R}$ iff $N \models \varphi(\mathbf{n}_1, ..., \mathbf{n}_m)$.
- An m-place function f as defined over natural numbers is *arithmetically definable* if and only if there exists an arithmetical formula φ(x₁, ..., x_m, y) such that for all natural numbers n₁, ..., n_m, n: f(n₁, ..., n_m) = n iff N ⊨ φ(n₁, ..., n_m, n).

Some Examples

- The x < y relationship is arithmetically defined by the formula ∃z x + s(z) = y
- The x ≤ y relationship is arithmetically defined by the formula ∃z x + z = y
- The modified predecessor function pred(x), where pred(0) = 0 and pred(x') = x, is defined by formula φ_{pred}(x, y) defined as (x = 0 ∧ y = 0) ∨ x = s(y)
- The modified difference function diff(x,y), where diff(x,y) = 0 for $x \le y$, and diff(x,y) = x y otherwise, is defined by formula $\varphi_{diff}(x, y, z)$ defined as $(x \le y \land z = 0) \lor x = y + z$

Quotient and Remainder

- The modified quotient function quo(x,y), where quo(x,y) = 0 for y = 0 and quo(x,y) = largest z such that y × z < x, is defined by formula φ_{quo}(x, y, z) defined as (y = 0 ∧ z = 0) ∨ ∃w (w < y ∧ (y × z) + w = x)
- The modified remainder function rem(x,y), where rem(x,y) = x for y = 0 and rem(x,y) = z such that z < y and there is some w such that y × w + z = x, is defined by formula φ_{rem}(x, y, z) defined as (y = 0 ∧ z = x) ∨ (z < y ∧ ∃w (y × w) + z = x) (we can also define φ_{rem} in terms of φ_{quo}: φ_{rem}(x, y, z) = ∃w (φ_{quo}(x, y, w) ∧ (y × w) + z = x))

Theorem: Every Recursive Function is Arithmetically Definable

- Proof: by induction over the formation of recursive functions.
- Base: Primitive functions:

— z

– S

-Id

- Step: Operations:
 - Composition
 - Primitive Recursion
 - Minimization

All Primitive Functions are A.D.

- Z:
 - -for $\phi(x, y)$ we can pick: y = 0
- S:

$$-\phi(x, y): y = s(x)$$

• id_{i}^{n} : - $\phi(x_{1}, ..., x_{n}, y) : y = x_{i}$

Composition

- Inductive step: Assuming that k-place function f and m-place functions g₁, ..., g_k are A.D., show that h = Cn[f, g₁, ..., g_k] is A.D.
- Proof: Given that f, g₁, ..., g_k are all A.D., we know that we have formulas φ_f(x₁, ..., x_k, y) and φ_{g1}(x₁, ..., x_m, y) ... φ_{gk}(x₁, ..., x_m, y) that arithmetically define f, g₁, ..., g_k.
- Well, then the formula $\varphi_h(x_1, ..., x_m, y) = \exists y_1 ... \\ \exists y_k \varphi_{g1}(x_1, ..., x_m, y_1) \land ... \land \varphi_{gk}(x_1, ..., x_m, y_k) \land \\ \varphi_f(y_1, ..., y_k, y) \text{ will arithmetically define h.}$

Primitive Recursion

- Inductive step: If functions f and g are A.D. (for simplicity we stick to 1-place function f, but proof trivially generalizes), show that h = Pr[f,g] is A.D.
- Remember: h(x,0) = f(x); h(x, s(y)) = g(x, y, h(x,y)).
- So, we know that h(a,b) = c iff there exists a sequence of numbers a₀, ..., a_b such that:

$$- a_0 = h(a,0) = f(a)$$

- $a_{s(i)} = h(a, s(i)) = g(a, i, a_i)$ for all i < b
- $a_{b} = h(a,b) = c$
- So, we want to encode a sequence of integers of some finite, but arbitrary length. Consider this to be n₁ ... n_k (this will make it clear what we mean by "i-th entry", and also simplify the proof in small ways). How do we encode such a sequence?

Encoding Sequences

- We know that we can encode any sequence of numbers of arbitrary length using a single number using the prime factors encoding.
- This, however, requires an exponential function, and we don't have a function symbol for that in our language (of course, we could just add one, but that would weaken the ultimate result).
- So, instead, we'll show that we can encode any sequence of natural numbers using two numbers s and t, such that the function ent(i,s,t) = i-th entry of sequence encoded by s and t, is A.D.

Chinese Remainder Theorem

- Take any numbers t₁, ..., t_k, no two of which have a common prime factor (i.e. any two of which are co-prime, or relatively prime, or have a greatest common divisor of 1).
- Now take any numbers a₁, ..., a_k such that a_i < t_i for all i.
- The Chinese Remainder Theorem now says that there is a number s such that for all i: rem(s,t_i) = a_i.

Example (and Inspiration for Theorem and its Proof)

- Let k = 2.
- Consider t₁ = 2 and t₂ = 3 (which are co-prime)
- Consider $a_1 = 1$ and $a_2 = 2$ (so $a_i < t_i$)
- Again, the claim is that there exists a number s such that rem(s,2) = 1 and rem(s,3) = 2.
- Let's look for such a number.

S	rem(s,2)	rem(s,3)
0	0	0
1	1	1
2	0	2
3	1	0
4	0	1
5	1	2

Not only do we find such a number (s = 5), but we notice that all pairs (rem(s,2),rem(s,3)) are different between 0 and 2×3.

Indeed, we can prove that this holds in general, and from that the Chinese Remainder Theorem immediately follows!

Proof of Chinese Remainder Theorem

- Again, we have numbers t₁, ..., t_k (that are all relatively prime) and a₁, ..., a_k such that a_i < t_i for all i.
- The key observation is that when you consider all numbers s < t₁× ... × t_k, and all associated tuples (rem(s,t₁), ... rem(s,t_k)), then all tuples are different.
- So, since there are exactly t₁× ... × t_k possible tuples of numbers <b₁, ..., b_k> such that b_i < t_i for all i, that means that one of these tuples is the <a₀, ..., a_n> tuple we are looking for, meaning that indeed there is a number s such that for all i: rem(s,t_i) = a_i.

Proof of Key Claim

- Proof by Contradiction!
- Suppose that two different numbers u < v <
 t₁× ... × t_k give same tuples, i.e. rem(u,t_i) =
 rem(v,t_i) for all i.
- Then consider q = v u.
- That means that rem(q,t_i) = 0 for all i. So q is multiple of t₁× ... × t_k.
- But: q > 0 and $q < t_1 \times ... \times t_k$.
- Contradiction!

OK, so what?

- OK, so I encode (a sequence of) numbers a₁, ..., a_k with a single number s, ... but I haven't told you what this number is.
- Even worse, I need numbers t₁, ..., t_k in order to recover (decode) a₁, ..., a_k! So, I am encoding and decoding k numbers using k+1 numbers ... How is this at all an improvement?!?
- Well, we'll see that numbers t₁, ..., t_k can be coded using a single number t, together with index i.
- Hence, we are down to 2 numbers: s and t.
- OK, but what is t?

Finishing Up

- Let t = n!, where $n = \max \{k, a_1, ..., a_k\}$.
- Let $t_i = t \times i + 1$
- Then: for any $0 < i < j \le k$: t_i and t_j are co-prime
 - Proof: Suppose t_i and t_j are not. Then there is some prime number p that divides both $t \times i + 1$ and $t \times j + 1$. This means that p also divides the difference, i.e. p divides $t \times (j i) = n! \times (j i)$. If p divides n!, then $p \le n$. If p divides j i, then $p < k \le n$. So, either way, $p \le n$, meaning that p divides n!, and therefore p divides n! $\times i$. but that means that p divides $t_i 1$ as well as t_i . Contradiction!
- Also, for all i: $a_i < t_i$
- So, we can apply the Chinese Remainder Theorem, i.e. there is an s such that for all i: a_i = rem(s,t_i)
- This also means that φ_{ent}(i, s, t, y) = φ_{rem}(s, (t × i) + s(0), y) arithmetically defines function ent(i,s,t).

The Formula

- OK, but we still don't have a formula that arithmetically defines h=Pr[f,g]. Again, for simplicity sake assume f is a 1place function f(x) and assume φ_f(x, y) defines f(x). Also, assume φ_g(x, y, z, w) defines function g(x, y, z).
- Then the following formula defines h(x,y): φ_h(x, y, z) = ∃s ∃t (/*we have two numbers s and t that encode a sequence such that */

 $\exists u (\phi_{ent}(s(0), s, t, u) \land \phi_f(x, u)) /* \text{ first entry is } f(x) * / \land \forall w ((0 < w \land w \le y) \rightarrow$

 $\exists u \ \exists v \ (\phi_{ent}(w, s, t, u) \land \phi_{ent}(s(w), s, t, v) \land \phi_g(x, w, u, v)) \\ /* \ subsequent \ entries \ are \ obtained \ by \ applying \ g \ */$

 $\wedge \varphi_{ent}(s(y), s, t, z) /*$ last entry (i.e. (y+1)-th entry) is answer */)

Minimization

- Inductive Step: Assuming f is a n+1-place function f(x₁, ..., x_n, y) that is arithmetically defined by φ_f(x₁, ..., x_n, y, z), show that h = Mn[f](x₁, ..., x_k) is arithmetically definable.
- Remember, h(x₁, ..., x_k) = y if y is the smallest number for which f(x₁, ..., x_n, y) = 0, and where for all w < y: f(x₁, ..., x_n, w) is defined. Otherwise, h(x₁, ..., x_k) is undefined.
- This function is defined by the following formula: $\varphi_h(x_1, ..., x_k, y) = \varphi_f(x_1, ..., x_n, y, 0) \land \forall w (w < y \rightarrow \exists z (\phi_f(x_1, ..., x_n, y, z) \land \neg z = 0))$