
Gödel’s Incompleteness Theorem 
 

Part II: Arithmetical Definability 

Computability and Logic 



The Language of Arithmetic 

• The language of arithmetic LA contains the 
following four non-logical symbols: 
– 0: constant symbol 
– s: 1-place function symbol 
– +: 2-place function symbol 
– ×: 2-place function symbol 

• An arithmetical formula is a FOL formula that 
uses LA as its only non-logical symbols. 



Standard Interpretation N 

• N is the following (standard) interpretation of the language of 
Arithmetic: 
– Domain: natural numbers (0,1,2,3, etc) 
– N(0) = 0 
– N(s) = s, the successor function 
– N(+) = +, the addition function 
– N(×) = ×, the multiplication function 
– More technically, where t0, t1, and t2 are variable-free terms: 

• N(s(t0)) = s(N(t0)) 
• N(t1 + t2) = N(t1) + N(t2) 

• N(t1 × t2) = N(t1) × N(t2) 



Arithmetical Definability 

• Let n = s(s(…(0)…)) (n times)  
• Remember that we write N ⊨ ϕ to say that under 

standard interpretation N, ϕ is a true statement. 
• An arithmetical formula ϕ(x) arithmetically defines a 

set S iff for all natural numbers n: n ∈ S iff N ⊨ ϕ(n). 
• A set S of natural numbers is arithmetically definable 

if and only if there exists an arithmetical formula ϕ(x) 
that arithmetically defines S. 



Arithmetical Definability of  
Relations and Functions 

• An m-place relation R of natural numbers is 
arithmetically definable if and only if there exists 
an arithmetical formula ϕ(x1, …, xm) such that for 
all natural numbers n1, …, nm : <n1, …, nm> ∈ R iff 
N ⊨ ϕ(n1, …, nm). 

• An m-place function f as defined over natural 
numbers is arithmetically definable if and only if 
there exists an arithmetical formula ϕ(x1, …, xm, 
y) such that for all natural numbers n1, …, nm, n: 
f(n1, …, nm) = n iff N ⊨ ϕ(n1, …, nm, n). 



Some Examples 

• The x < y relationship is arithmetically defined by the 
formula ∃z x + s(z) = y 

• The x ≤ y relationship is arithmetically defined by the 
formula ∃z x + z = y 

• The modified predecessor function pred(x), where 
pred(0) = 0 and pred(x’) = x, is defined by formula ϕpred(x, 
y) defined as (x = 0 ∧ y = 0) ∨ x = s(y) 

• The modified difference function diff(x,y), where diff(x,y) 
= 0 for x ≤ y, and diff(x,y) = x – y otherwise, is defined by 
formula ϕdiff(x, y, z) defined as (x ≤ y ∧ z = 0) ∨ x = y + z 
 



Quotient and Remainder 

• The modified quotient function quo(x,y), where 
quo(x,y) = 0 for y = 0 and quo(x,y) = largest z such 
that y × z < x, is defined by formula ϕquo(x, y, z) 
defined as (y = 0 ∧ z = 0) ∨ ∃w (w < y ∧ (y × z) + w = 
x) 

• The modified remainder function rem(x,y), where 
rem(x,y) = x for y = 0 and rem(x,y) = z such that z < y 
and there is some w such that y × w + z = x, is 
defined by formula ϕrem(x, y, z) defined as (y = 0 ∧ z = 
x) ∨ (z < y ∧ ∃w (y × w) + z = x) (we can also define 
ϕrem in terms of ϕquo: ϕrem(x, y, z) = ∃w (ϕquo(x, y, w) 
∧ (y × w) + z = x) ) 



Theorem: Every Recursive Function is 
Arithmetically Definable 

• Proof: by induction over the formation of 
recursive functions. 

• Base: Primitive functions: 
– z 
– s 
– Id 

• Step: Operations: 
– Composition 
– Primitive Recursion 
– Minimization 



All Primitive Functions are A.D. 

• z:  
– for ϕ(x, y) we can pick: y = 0 

• s:  
–ϕ(x, y): y = s(x) 

• idn
i:  

–ϕ(x1, …, xn, y) : y = xi 
 



Composition 

• Inductive step: Assuming that k-place function 
f and m-place functions g1, …, gk are A.D., 
show that h = Cn[f, g1, …, gk] is A.D. 

• Proof: Given that f, g1, …, gk are all A.D., we 
know that we have formulas ϕf(x1, …, xk, y) 
and ϕg1(x1, …, xm, y) … ϕgk(x1, …, xm, y) that 
arithmetically define f, g1, …, gk.  

• Well, then the formula ϕh(x1, …, xm, y) = ∃y1 … 
∃yk ϕg1(x1, …, xm, y1) ∧ … ∧ ϕgk(x1, …, xm, yk) ∧ 
ϕf(y1, …, yk, y) will arithmetically define h. 



Primitive Recursion 

• Inductive step: If functions f and g are A.D. (for simplicity we 
stick to 1-place function f, but proof trivially generalizes), 
show that h = Pr[f,g] is A.D. 

• Remember: h(x,0) = f(x); h(x, s(y)) = g(x, y, h(x,y)). 
• So, we know that h(a,b) = c iff there exists a sequence of 

numbers a0, …, ab such that:  
– a0 = h(a,0) = f(a) 
– as(i) = h(a, s(i)) = g(a,i,ai) for all i < b 
– ab = h(a,b) = c 

• So, we want to encode a sequence of integers of some finite, 
but arbitrary length. Consider this to be n1 … nk (this will make 
it clear what we mean by “i-th entry”, and also simplify the 
proof in small ways). How do we encode such a sequence? 



Encoding Sequences 
• We know that we can encode any sequence of numbers 

of arbitrary length using a single number using the prime 
factors encoding. 

• This, however, requires an exponential function, and we 
don’t have a function symbol for that in our language (of 
course, we could just add one, but that would weaken 
the ultimate result). 

• So, instead, we’ll show that we can encode any sequence 
of natural numbers using two numbers s and t, such that 
the function ent(i,s,t) = i-th entry of sequence encoded 
by s and t, is A.D. 



Chinese Remainder Theorem 

• Take any numbers t1, …, tk, no two of which 
have a common prime factor (i.e. any two of 
which are co-prime, or relatively prime, or 
have a greatest common divisor of 1). 

• Now take any numbers a1, …, ak such that ai < 
ti for all i. 

• The Chinese Remainder Theorem now says 
that there is a number s such that for all i: 
rem(s,ti) = ai. 



Example (and Inspiration for  
Theorem and its Proof) 

• Let k = 2. 
• Consider t 1 = 2 and t2 = 3 (which are co-prime) 
• Consider a1 = 1 and a2 = 2 (so ai < ti) 
• Again, the claim is that there exists a number s such 

that rem(s,2) = 1 and rem(s,3) = 2. 
• Let’s look for such a number. 

 s rem(s,2) rem(s,3) 

0 0 0 

1 1 1 

2 0 2 

3 1 0 

4 0 1 

5 1 2 

Not only do we find such a 
number (s = 5), but we notice  
that all pairs (rem(s,2),rem(s,3))  
are different between 0 and 2×3. 
 
Indeed, we can prove that this  
holds in general, and from that the  
Chinese Remainder Theorem 
immediately follows! 



Proof of Chinese Remainder Theorem 

• Again, we have numbers t1, …, tk (that are all 
relatively prime) and a1, …, ak such that ai < ti for all i.  

• The key observation is that when you consider all 
numbers s < t1× … × tk, and all associated tuples 
(rem(s,t1), … rem(s,tk)), then all tuples are different. 

• So, since there are exactly t1× … × tk possible tuples 
of numbers <b1, …, bk> such that bi < ti for all i, that 
means that one of these tuples is the <a0, …, an> 
tuple we are looking for, meaning that indeed there 
is a number s such that for all i: rem(s,ti) = ai. 



Proof of Key Claim 

• Proof by Contradiction! 
• Suppose that two different numbers u < v < 

t1× … × tk give same tuples, i.e. rem(u,ti) = 
rem(v,ti) for all i. 

• Then consider q = v – u. 
• That means that rem(q,ti) = 0 for all i. So q is 

multiple of t1× … × tk .  
• But: q > 0 and q < t1× … × tk.  
• Contradiction! 



OK, so what? 

• OK, so I encode (a sequence of) numbers a1, …, ak 
with a single number s, … but I haven’t told you what 
this number is. 

• Even worse, I need numbers t1, …, tk in order to 
recover (decode) a1, …, ak! So, I am encoding and 
decoding k numbers using k+1 numbers … How is 
this at all an improvement?!? 

• Well, we’ll see that numbers t1, …, tk can be coded 
using a single number t, together with index i. 

• Hence, we are down to 2 numbers: s and t. 
• OK, but what is t? 



Finishing Up 

• Let t = n!, where n = max {k, a1, …, ak}. 
• Let ti = t × i + 1 
• Then: for any 0 < i < j ≤ k: ti and tj are co-prime 

– Proof: Suppose ti and tj are not. Then there is some prime number p 
that divides both t × i + 1 and t × j + 1. This means that p also divides 
the difference, i.e. p divides t × (j – i) = n! × (j - i).   If p divides n!, then 
p ≤ n. If p divides j - i, then p < k ≤ n. So, either way, p ≤ n, meaning 
that p divides n!, and therefore p divides n! × i. but that means that p 
divides ti – 1 as well as ti. Contradiction! 

• Also, for all i: ai < ti 

• So, we can apply the Chinese Remainder Theorem, i.e. there is 
an s such that for all i: ai = rem(s,ti) 

• This also means that ϕent(i, s, t, y) = ϕrem(s, (t × i) + s(0), y) 
arithmetically defines function ent(i,s,t). 



The Formula 

• OK, but we still don’t have a formula that arithmetically 
defines h=Pr[f,g]. Again, for simplicity sake assume f is a 1-
place function f(x) and assume ϕf(x, y) defines f(x).  Also, 
assume ϕg(x, y, z, w) defines function g(x, y, z). 

• Then the following formula defines h(x,y): ϕh(x, y, z) =  
 ∃s ∃t ( /*we have two numbers s and t that encode a 

sequence such that */  
  ∃u (ϕent(s(0), s, t, u) ∧ ϕf(x, u)) /* first entry is f(x) */ 
  ∧ ∀w ((0 < w ∧ w ≤ y) →  
  ∃u ∃v (ϕent(w, s, t, u) ∧ ϕent(s(w), s, t, v) ∧ ϕg(x, w, u, v)) 

 /* subsequent entries are obtained by applying g */ 
  ∧ ϕent(s(y), s, t, z) /* last entry (i.e. (y+1)-th entry) is 

 answer */ ) 



Minimization 

• Inductive Step: Assuming f is a n+1-place function 
f(x1, …, xn, y) that is arithmetically defined by ϕf(x1, …, 
xn, y, z), show that h = Mn[f](x1, …, xk) is 
arithmetically definable. 

• Remember, h(x1, …, xk) = y if y is the smallest number 
for which f(x1, …, xn, y) = 0, and where for all w < y: 
f(x1, …, xn, w) is defined. Otherwise, h(x1, …, xk) is 
undefined. 

• This function is defined by the following formula: 
ϕh(x1, …, xk, y) = ϕf(x1, …, xn, y, 0) ∧ ∀w (w < y → ∃z 
(ϕf(x1, …, xn, y, z) ∧ ¬ z = 0)) 
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