Godel’s Incompleteness Theorem

Part II: Arithmetical Definability

Computability and Logic



The Language of Arithmetic

* The language of arithmetic L, contains the
following four non-logical symbols:

— 0: constant symbol

—s: 1-place function symbol
— +: 2-place function symbol
— x: 2-place function symbol

 An arithmetical formula is a FOL formula that
uses L, as its only non-logical symbols.



Standard Interpretation N

N is the following (standard) interpretation of the language of
Arithmetic:
— Domain: natural numbers (0,1,2,3, etc)
— N(0)=0
— N(s) = s, the successor function
— N(+) = +, the addition function
— N(x) = x, the multiplication function
— More technically, where t,, t,, and t, are variable-free terms:
* N(s(ty) = s(N(t,))
e N(t, +t,) = N(t;) + N(t,)
e N(t; xt,) = N(t;) x N(t,)



Arithmetical Definability

Let n = s(s(...(0)...)) (n times)
Remember that we write N = ¢ to say that under
standard interpretation N, ¢ is a true statement.

An arithmetical formula @(x) arithmetically defines a
set S iff for all natural numbers n: n € Siff N E @(n).

A set S of natural numbers is arithmetically definable
if and only if there exists an arithmetical formula @(x)
that arithmetically defines S.



Arithmetical Definability of
Relations and Functions

 An m-place relation R of natural numbers is
arithmetically definable if and only if there exists
an arithmetical formula @(x,, ..., X,,) such that for
all natural numbersn,, ..., n_:<n,, .., n_> e Riff
N E @(ny, ..., n).

 An m-place function f as defined over natural
numbers is arithmetically definable if and only if
there exists an arithmetical formula @(xy, ..., X,.,,
y) such that for all natural numbersn,, ..., n_, n:
f(ny, ..., n.) =niff N = @(ny, ..., n_, n).



Some Examples

The x <y relationship is arithmetically defined by the
formuladzx+s(z)=y

The x £y relationship is arithmetically defined by the
formuladzx+z=y

The modified predecessor function pred(x), where
pred(0) = 0 and pred(x’) = x, is defined by formula @,,.4(X,
y) definedas (x=0Ay=0) v x =s(y)

The modified difference function diff(x,y), where diff(x,y)
= 0 for x £y, and diff(x,y) = x —y otherwise, is defined by
formula @4, v, ) defined as (x<yAz=0)vx=y+2z



Quotient and Remainder

 The modified quotient function quo(x,y), where
quo(x,y) = 0 for y = 0 and quo(x,y) = largest z such
thaty x z <x, is defined by formula @,(x, ¥, 2)
definedas(y=0Az=0)vidw(w<yA(yxz)+w=
X)

 The modified remainder function rem(x,y), where
rem(x,y) = x fory =0 and rem(x,y) = zsuch thatz<y
and there is some w such thaty xw+z=x, is
defined by formula @,.(X, y, z) defined as (y=0Az =
X)Vv(z<yA3dw(y xw)+z=x)(we can also define

Prem N terms of @y 00 Orem(X; ¥, 2) = AW (@g0(%, Y, W)
Alyxw)+z=x))



Theorem: Every Recursive Function is
Arithmetically Definable

* Proof: by induction over the formation of
recursive functions.

e Base: Primitive functions:
— 2z
— S
—Id
e Step: Operations:
— Composition
— Primitive Recursion

— Minimization



All Primitive Functions are A.D.

* Z

—for ¢@(x, y) we can pick:y=0
¢ S.

—o(x, y):y = s(x)
o idn:

— (X, w0y X, ¥) 1Y =X



Composition

* Inductive step: Assuming that k-place function
f and m-place functions g,, ..., g, are A.D.,
show that h = Cnl[f, g,, ..., g.] is A.D.

* Proof: Given thatf, g,, ..., g are all A.D., we
know that we have formulas @(x;, ..., X,, Y)

and Qgy(Xy, ooy Xy Y) oo Qgi(Xy, ooy Xy Y) that
arithmetically define f, g,, ..., 8,

e Well, then the formula @,(x4, ..., X, ¥) = 3y, ...

Yy @1 (Xgs cos Xy YA) A coe A QX ooy Xy Vi) A
QY - Vi Y) Will arithmetically define h.



Primitive Recursion

Inductive step: If functions f and g are A.D. (for simplicity we
stick to 1-place function f, but proof trivially generalizes),
show that h = Pr|[f,g] is A.D.

Remember: h(x,0) = f(x); h(x, s(y)) = g(x, y, h(x,y)).
So, we know that h(a,b) = c iff there exists a sequence of
numbers a,, ..., a,, such that:

— 3, =h(a,0) =f(a)

— ay; = h(a, s(i)) = gla,i,a;) foralli<b

— a,=h(a,b)=c
So, we want to encode a sequence of integers of some finite,
but arbitrary length. Consider this to be n, ... n, (this will make

it clear what we mean by “i-th entry”, and also simplify the
proof in small ways). How do we encode such a sequence?



Encoding Sequences

 We know that we can encode any sequence of numbers
of arbitrary length using a single number using the prime
factors encoding.

e This, however, requires an exponential function, and we
don’t have a function symbol for that in our language (of
course, we could just add one, but that would weaken
the ultimate result).

e So, instead, we’ll show that we can encode any sequence
of natural numbers using two numbers s and t, such that
the function ent(i,s,t) = i-th entry of sequence encoded
by sandt, is A.D.



Chinese Remainder Theorem

* Take any numbers t,, ..., t,, no two of which
have a common prime factor (i.e. any two of
which are co-prime, or relatively prime, or
have a greatest common divisor of 1).

* Now take any numbers a,, ..., a, such that a, <
t. for all i.

* The Chinese Remainder Theorem now says
that there is a number s such that for all i:
rem(s,t) = a.



Example (and Inspiration for

Theorem and its Proof)
Let k = 2.

Consider t, =2 and t, = 3 (which are co-prime)
Considera; =1anda,=2(soa;<t)

Again, the claim is that there exists a number s such
that rem(s,2) =1 and rem(s,3) = 2.

Let’s look for such a number.

_mm Not only do we find such a

number (s = 5), but we notice
that all pairs (rem(s,2),rem(s,3))
are different between 0 and 2x3.

Indeed, we can prove that this
holds in general, and from that the
Chinese Remainder Theorem
immediately follows!

v B~ W N = O
R O B O = O
N P O NN -k O



Proof of Chinese Remainder Theorem

e Again, we have numbers t,, ..., t, (that are all
relatively prime) and a,, ..., a, such that a, < t, for all i.

 The key observation is that when you consider all
numbers s < t,x ... x t,, and all associated tuples
(rem(s,t,), ... rem(s,t,)), then all tuples are different.

* So, since there are exactly t,x ... x t, possible tuples
of numbers <b,, ..., b,> such that b, < t, for all i, that
means that one of these tuples is the <a,, ..., a,>
tuple we are looking for, meaning that indeed there
is @a number s such that for all i: rem(s,t,) = a..



Proof of Key Claim

Proof by Contradiction!

Suppose that two different numbers u<v <
t,x .. xt, give same tuples, i.e. rem(u,t,) =
rem(v,t,) for all i.

Then consider g =v —u.

That means that rem(q,t) = 0 for all i. So q is
multiple of t;x ... x t .

But: g>0and g<t;x .. xt,.
Contradiction!



OK, so what?

OK, so | encode (a sequence of) numbers a, ..., a,
with a single number s, ... but | haven’t told you what
this number is.

Even worse, | need numbers t,, ..., t, in order to
recover (decode) a,, ..., a,! So,  am encoding and
decoding k numbers using k+1 numbers ... How is
this at all an improvement?!?

Well, we’ll see that numbers t,, ..., t, can be coded
using a single number t, together with index i.

Hence, we are down to 2 numbers: s and t.
OK, but what is t?



Finishing Up

Let t = nl, where n = max{k, a,, ..., a,}.
lett =txi+1

Then: forany 0 <i<j<k:t andt; are co-prime

— Proof: Suppose t; and t; are not. Then there is some prime number p
that divides botht xi+ 1 and t xj+ 1. This means that p also divides
the difference, i.e. p divides t x (j—i) =n! x (j-i). If p divides nl, then
p<n.If pdividesj-i, then p<k<n.So, either way, p £n, meaning
that p divides n!, and therefore p divides n! x i. but that means that p
divides t,— 1 as well as t.. Contradiction!

Also, for alli: a, < t,
So, we can apply the Chinese Remainder Theorem, i.e. there is
an s such that for all i: a, = rem(s,t))

This also means that @_,(i, s, t, ¥) = @,.(S, (t x i) + 5(0), y)
arithmetically defines function ent(i,s,t).



The Formula

e OK, but we still don’t have a formula that arithmetically
defines h=Pr[f,g]. Again, for simplicity sake assume fis a 1-
place function f(x) and assume @((x, y) defines f(x). Also,
assume (pg(x, y, z, W) defines function g(x, v, z).

e Then the following formula defines h(x,y): @,(x, Y, z) =

3s 3t ( /*we have two numbers s and t that encode a
sequence such that */

u (@,(s(0), s, t, u) A @(x, u)) /* first entry is f(x) */
AVW(O<wAwSy)>

Ju IV (Qene(W; S, t, U) A @ei(S(W), s, t, V) A @(X, W, u, v))
/* subsequent entries are obtained by applying g */

A Q.(s(y), s, t, 2) /* last entry (i.e. (y+1)-th entry) is
answer */)



Minimization

* Inductive Step: Assuming f is a n+1-place function

-

f(x, ..., X,,, y) that is arithmetically defined by @x,, ...
X, Y, Z), show that h = Mn[f](x,, ..., X,) is
arithmetically definable.

Remember, h(x,, ..., x,) =y if y is the smallest number
for which f(x,, ..., x,, y) =0, and where for all w < y:
f(x, ..., X, w) is defined. Otherwise, h(xy, ..., X,) is
undefined.

This function is defined by the following formula:
Qp(Xq) vor Xpp Y) = O4(X, o0y X, Y, 0) A VW (W <y — T2
(@i(Xq, o0y X, ¥, 2Z) A= 2 =0))
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