Gödel's Incompleteness Theorem

Part II: Arithmetical Definability

Computability and Logic

The Language of Arithmetic

- The language of arithmetic L_{A} contains the following four non-logical symbols:
- 0: constant symbol
-s: 1-place function symbol
- +: 2-place function symbol
$-\times$: 2-place function symbol
- An arithmetical formula is a FOL formula that uses L_{A} as its only non-logical symbols.

Standard Interpretation N

- N is the following (standard) interpretation of the language of Arithmetic:
- Domain: natural numbers (0,1,2,3, etc)
$-\mathrm{N}(\mathrm{O})=0$
- $N(s)=s$, the successor function
$-N(+)=+$, the addition function
- $N(x)=x$, the multiplication function
- More technically, where $\mathbf{t}_{0}, \mathbf{t}_{1}$, and \mathbf{t}_{2} are variable-free terms:
- $N\left(s\left(t_{0}\right)\right)=s\left(N\left(t_{0}\right)\right)$
- $N\left(t_{1}+t_{2}\right)=N\left(t_{1}\right)+N\left(t_{2}\right)$
- $N\left(t_{1} \times t_{2}\right)=N\left(t_{1}\right) \times N\left(t_{2}\right)$

Arithmetical Definability

- Let $\mathbf{n}=\mathbf{s}(\mathbf{s}(. . .(\mathbf{0}) . .)$.$) (\mathrm{n}$ times)
- Remember that we write $N \vDash \varphi$ to say that under standard interpretation N, φ is a true statement.
- An arithmetical formula $\varphi(\mathbf{x})$ arithmetically defines a set S iff for all natural numbers $\mathrm{n}: \mathrm{n} \in \mathrm{S}$ iff $\mathrm{N} \vDash \varphi(\mathrm{n})$.
- A set S of natural numbers is arithmetically definable if and only if there exists an arithmetical formula $\varphi(\mathbf{x})$ that arithmetically defines S.

Arithmetical Definability of Relations and Functions

- An m-place relation R of natural numbers is arithmetically definable if and only if there exists an arithmetical formula $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{m}}\right)$ such that for all natural numbers $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}:\left\langle\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right\rangle \in \mathrm{R}$ iff $N \vDash \varphi\left(n_{1}, \ldots, n_{m}\right)$.
- An m-place function f as defined over natural numbers is arithmetically definable if and only if there exists an arithmetical formula $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{m}}\right.$, y) such that for all natural numbers n_{1}, \ldots, n_{m}, n : $\mathrm{f}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right)=\mathrm{n}$ iff $\mathrm{N} \vDash \varphi\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}, \mathrm{n}\right)$.

Some Examples

- The $x<y$ relationship is arithmetically defined by the formula $\exists \mathbf{z} \mathbf{x}+\mathbf{s}(\mathbf{z})=\mathbf{y}$
- The $x \leq y$ relationship is arithmetically defined by the formula $\exists \mathbf{z} \mathbf{x + z}=\mathbf{y}$
- The modified predecessor function pred(x), where $\operatorname{pred}(0)=0$ and $\operatorname{pred}\left(x^{\prime}\right)=x$, is defined by formula $\varphi_{\text {pred }}(\mathbf{x}$, $y)$ defined as $(\mathbf{x}=\mathbf{0} \wedge \mathbf{y}=0) \vee \mathbf{x}=\boldsymbol{s}(\mathbf{y})$
- The modified difference function diff(x, y), where diff(x, y) $=0$ for $x \leq y$, and $\operatorname{diff}(x, y)=x-y$ otherwise, is defined by formula $\boldsymbol{\varphi}_{\text {diff }}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ defined as $(\mathbf{x} \leq \mathbf{y} \wedge \mathbf{z}=\mathbf{0}) \vee \mathbf{x}=\mathbf{y}+\mathbf{z}$

Quotient and Remainder

- The modified quotient function quo(x, y), where quo(x, y) $=0$ for $\mathrm{y}=0$ and quo($\mathrm{x}, \mathrm{y})=$ largest z such that $y \times z<x$, is defined by formula $\varphi_{\text {quo }}(x, y, z)$ defined as $(\mathbf{y}=\mathbf{0} \wedge \mathbf{z}=\mathbf{0}) \vee \exists \mathbf{w}(\mathbf{w}<\mathbf{y} \wedge(\mathbf{y} \times \mathbf{z})+\mathbf{w}=$ x)
- The modified remainder function rem(x, y), where $\operatorname{rem}(x, y)=x$ for $y=0$ and rem $(x, y)=z$ such that $z<y$ and there is some w such that $y \times w+z=x$, is defined by formula $\varphi_{\text {rem }}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ defined as $(\mathbf{y}=\mathbf{0} \wedge \mathbf{z}=$ $\mathbf{x}) \vee(\mathbf{z}<\mathbf{y} \wedge \exists \mathbf{w}(\mathbf{y} \times \mathbf{w})+\mathbf{z = x})$ (we can also define $\varphi_{\text {rem }}$ in terms of $\varphi_{\text {quo }}: \varphi_{\text {rem }}(x, y, z)=\exists w\left(\varphi_{\text {quo }}(x, y, w)\right.$ $\wedge(y \times w)+z=x))$

Theorem: Every Recursive Function is Arithmetically Definable

- Proof: by induction over the formation of recursive functions.
- Base: Primitive functions:
- Z
- S
- Id
- Step: Operations:
- Composition
- Primitive Recursion
- Minimization

All Primitive Functions are A.D.

- Z:
- for $\varphi(x, y)$ we can pick: $\mathbf{y}=0$
- $\mathrm{s}:$

$$
-\varphi(x, y): y=s(x)
$$

- $\mathrm{id}^{\mathrm{n}}{ }_{\mathrm{i}}$:

$$
-\varphi\left(x_{1}, \ldots, x_{n}, y\right): y=x_{i}
$$

Composition

- Inductive step: Assuming that k-place function f and m-place functions g_{1}, \ldots, g_{k} are A.D., show that $h=C n\left[f, g_{1}, \ldots, g_{k}\right]$ is A.D.
- Proof: Given that f, g_{1}, \ldots, g_{k} are all A.D., we know that we have formulas $\varphi_{f}\left(x_{1}, \ldots, x_{k}, y\right)$ and $\varphi_{\mathrm{g} 1}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{m}}, \mathbf{y}\right) \ldots \varphi_{\mathrm{gk}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{m}}, \mathbf{y}\right)$ that arithmetically define f, g_{1}, \ldots, g_{k}.
- Well, then the formula $\varphi_{h}\left(x_{1}, \ldots, x_{m}, y\right)=\exists y_{1} \ldots$ $\exists y_{k} \varphi_{g 1}\left(x_{1}, \ldots, x_{m}, y_{1}\right) \wedge \ldots \wedge \varphi_{g k}\left(x_{1}, \ldots, x_{m}, y_{k}\right) \wedge$ $\varphi_{f}\left(y_{1}, \ldots, y_{k}, y\right)$ will arithmetically define h.

Primitive Recursion

- Inductive step: If functions fand g are A.D. (for simplicity we stick to 1-place function f, but proof trivially generalizes), show that $h=\operatorname{Pr}[f, g]$ is A.D.
- Remember: $h(x, 0)=f(x) ; h(x, s(y))=g(x, y, h(x, y))$.
- So, we know that $h(a, b)=c$ iff there exists a sequence of numbers a_{0}, \ldots, a_{b} such that:

$$
\begin{aligned}
& -a_{0}=h(a, 0)=f(a) \\
& -a_{s(i)}=h(a, s(i))=g\left(a, i, a_{i}\right) \text { for all } i<b \\
& -a_{b}=h(a, b)=c
\end{aligned}
$$

- So, we want to encode a sequence of integers of some finite, but arbitrary length. Consider this to be $n_{1} \ldots n_{k}$ (this will make it clear what we mean by "i-th entry", and also simplify the proof in small ways). How do we encode such a sequence?

Encoding Sequences

- We know that we can encode any sequence of numbers of arbitrary length using a single number using the prime factors encoding.
- This, however, requires an exponential function, and we don't have a function symbol for that in our language (of course, we could just add one, but that would weaken the ultimate result).
- So, instead, we'll show that we can encode any sequence of natural numbers using two numbers s and t, such that the function ent $(i, s, t)=i$-th entry of sequence encoded by s and t, is A.D.

Chinese Remainder Theorem

- Take any numbers t_{1}, \ldots, t_{k}, no two of which have a common prime factor (i.e. any two of which are co-prime, or relatively prime, or have a greatest common divisor of 1).
- Now take any numbers a_{1}, \ldots, a_{k} such that $a_{i}<$ t_{i} for all i.
- The Chinese Remainder Theorem now says that there is a number s such that for all i : $\operatorname{rem}\left(\mathrm{s}, \mathrm{t}_{\mathrm{i}}\right)=\mathrm{a}_{\mathrm{i}}$.

Example (and Inspiration for Theorem and its Proof)

- Let $\mathrm{k}=2$.
- Consider $t_{1}=2$ and $t_{2}=3$ (which are co-prime)
- Consider $a_{1}=1$ and $a_{2}=2\left(\right.$ so $\left.a_{i}<t_{i}\right)$
- Again, the claim is that there exists a number s such that rem $(\mathrm{s}, 2)=1$ and rem $(\mathrm{s}, 3)=2$.
- Let's look for such a number.

s	$r e m(s, 2)$	$\operatorname{rem}(s, 3)$
0	0	0
1	1	1
2	0	2
3	1	0
4	0	1
5	1	2

Not only do we find such a number ($s=5$), but we notice that all pairs (rem(s,2),rem(s,3)) are different between 0 and 2×3.

Indeed, we can prove that this holds in general, and from that the Chinese Remainder Theorem immediately follows!

Proof of Chinese Remainder Theorem

- Again, we have numbers t_{1}, \ldots, t_{k} (that are all relatively prime) and a_{1}, \ldots, a_{k} such that $a_{i}<t_{i}$ for all i.
- The key observation is that when you consider all numbers $s<t_{1} \times \ldots \times t_{k}$, and all associated tuples (rem(s, t_{1}), ... rem($\left.\mathrm{s}, \mathrm{t}_{\mathrm{k}}\right)$), then all tuples are different.
- So, since there are exactly $t_{1} \times \ldots \times t_{k}$ possible tuples of numbers $<b_{1}, \ldots, b_{k}>$ such that $b_{i}<t_{i}$ for all i, that means that one of these tuples is the $<a_{0}, \ldots, a_{n}>$ tuple we are looking for, meaning that indeed there is a number s such that for all i : rem $\left(s, t_{i}\right)=a_{i}$.

Proof of Key Claim

- Proof by Contradiction!
- Suppose that two different numbers $u<v<$ $t_{1} \times \ldots \times t_{k}$ give same tuples, i.e. rem $\left(u, t_{i}\right)=$ rem $\left(v, t_{i}\right)$ for all i.
- Then consider $q=v-u$.
- That means that rem $\left(q, t_{i}\right)=0$ for all i. So q is multiple of $t_{1} \times \ldots \times t_{k}$.
- But: $q>0$ and $q<t_{1} \times \ldots \times t_{k}$.
- Contradiction!

OK, so what?

- OK, so I encode (a sequence of) numbers a_{1}, \ldots, a_{k} with a single number s, ... but I haven't told you what this number is.
- Even worse, I need numbers t_{1}, \ldots, t_{k} in order to recover (decode) a_{1}, \ldots, a_{k} ! So, I am encoding and decoding k numbers using $k+1$ numbers ... How is this at all an improvement?!?
- Well, we'll see that numbers t_{1}, \ldots, t_{k} can be coded using a single number t, together with index i.
- Hence, we are down to 2 numbers: s and t.
- OK, but what is t?

Finishing Up

- Let $t=n!$, where $n=\max \left\{k, a_{1}, \ldots, a_{k}\right\}$.
- Let $\mathrm{t}_{\mathrm{i}}=\mathrm{t} \times \mathrm{i}+1$
- Then: for any $0<\mathrm{i}<\mathrm{j} \leq \mathrm{k}$: t_{i} and t_{j} are co-prime
- Proof: Suppose t_{i} and t_{j} are not. Then there is some prime number p that divides both $\mathrm{t} \times \mathrm{i}+1$ and $\mathrm{t} \times \mathrm{j}+1$. This means that p also divides the difference, i.e. p divides $t \times(j-i)=n!\times(j-i)$. If p divides $n!$, then $p \leq n$. If p divides $j-i$, then $p<k \leq n$. So, either way, $p \leq n$, meaning that p divides $n!$, and therefore p divides $n!\times i$. but that means that p divides $\mathrm{t}_{\mathrm{i}}-1$ as well as t_{i}. Contradiction!
- Also, for all $i: a_{i}<t_{i}$
- So, we can apply the Chinese Remainder Theorem, i.e. there is an s such that for all $i: a_{i}=\operatorname{rem}\left(s, t_{i}\right)$
- This also means that $\varphi_{\text {ent }}(\mathbf{i}, \mathbf{s}, \mathrm{t}, \mathrm{y})=\varphi_{\text {rem }}(\mathrm{s},(\mathrm{t} \times \mathrm{i})+\mathbf{s}(0), \mathrm{y})$ arithmetically defines function ent(i,s,t).

The Formula

- OK, but we still don't have a formula that arithmetically defines $h=\operatorname{Pr}[f, g]$. Again, for simplicity sake assume f is a 1 place function $f(x)$ and assume $\varphi_{f}(x, y)$ defines $f(x)$. Also, assume $\varphi_{g}(x, y, z, w)$ defines function $g(x, y, z)$.
- Then the following formula defines $h(x, y): \varphi_{h}(\mathbf{x}, \mathbf{y}, \mathbf{z})=$ $\exists \mathrm{s} \exists \mathrm{t}$ (/ * we have two numbers s and t that encode a sequence such that */
$\exists \mathrm{u}\left(\varphi_{\mathrm{ent}}(\mathbf{s}(\mathbf{0}), \mathrm{s}, \mathrm{t}, \mathrm{u}) \wedge \varphi_{\mathrm{f}}(\mathrm{x}, \mathrm{u})\right) / *$ first entry is $\mathrm{f}(\mathrm{x}) * /$ $\wedge \forall \mathbf{w}((0<w \wedge \mathbf{w} \leq \mathrm{y}) \rightarrow$
$\exists u \exists v\left(\varphi_{\text {ent }}(w, s, t, u) \wedge \varphi_{\text {ent }}(s(w), s, t, v) \wedge \varphi_{g}(x, w, u, v)\right)$ /* subsequent entries are obtained by applying g */
$\wedge \varphi_{\text {ent }}(s(y), s, t, z) / *$ last entry (i.e. ($y+1$)-th entry) is answer */)

Minimization

- Inductive Step: Assuming f is a $\mathrm{n}+1$-place function $f\left(x_{1}, \ldots, x_{n}, y\right)$ that is arithmetically defined by $\varphi_{f}\left(x_{1}, \ldots\right.$, $\left.x_{n}, y, z\right)$, show that $h=\operatorname{Mn}[f]\left(x_{1}, \ldots, x_{k}\right)$ is arithmetically definable.
- Remember, $\mathrm{h}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\mathrm{y}$ if y is the smallest number for which $f\left(x_{1}, \ldots, x_{n}, y\right)=0$, and where for all $w<y$: $f\left(x_{1}, \ldots, x_{n}, w\right)$ is defined. Otherwise, $h\left(x_{1}, \ldots, x_{k}\right)$ is undefined.
- This function is defined by the following formula: $\varphi_{h}\left(x_{1}, \ldots, x_{k}, y\right)=\varphi_{f}\left(x_{1}, \ldots, x_{n}, y, 0\right) \wedge \forall w(w<y \rightarrow \exists z$ $\left.\left(\varphi_{f}\left(x_{1}, \ldots, x_{n}, y, z\right) \wedge \neg z=0\right)\right)$

